755
teachings (mander.xyz)
top 47 comments
sorted by: hot top controversial new old
[-] Neato@ttrpg.network 108 points 7 months ago
[-] ech@lemm.ee 67 points 7 months ago

Eh, not really. It's been a while, but I'm pretty sure the rule in algebra when solving for a squared variable like this is to use ± for exactly that reason.

[-] knorke3@lemm.ee 23 points 7 months ago* (last edited 7 months ago)

just wait for n-th roots of imaginary numbers :)

[-] namelivia@lemmy.world 89 points 7 months ago* (last edited 7 months ago)

-3 id the hidden dark version character of the solution, like evil ryu or devil jin.

[-] lseif@sopuli.xyz 11 points 7 months ago

just a glimpse into my dark and twisted mind

[-] ZILtoid1991@lemmy.world 7 points 7 months ago

But for the Joker, that's the real solution.

[-] lseif@sopuli.xyz 1 points 7 months ago

i think its more complex than that

[-] Gemini24601@lemmy.world 48 points 7 months ago* (last edited 7 months ago)

Doesn’t x also equal -3?

[-] lugal@lemmy.ml 87 points 7 months ago
[-] uis@lemm.ee 3 points 7 months ago
[-] Pringles@lemm.ee 1 points 7 months ago

🎶 I was made for solving you baby 🎶

[-] dankestnug420@lemmy.ml 18 points 7 months ago
[-] UnRelatedBurner@sh.itjust.works 29 points 7 months ago

Uhm, actually 🤓☝️!

Afaik sqrt only returns positive numbers, but if you're searching for X you should do more logic, as both -3 and 3 squared is 9, but sqrt(9) is just 3.

If I'm wrong please correct me, caz I don't really know how to properly write this down in a proof, so I might be wrong here. :p
(ps: I fact checked with wolfram, but I still donno how to split the equation formally)

[-] criitz@reddthat.com 23 points 7 months ago* (last edited 7 months ago)

You're correct. The square root operator only returns the principal root (the positive one).

So if x^2 = 9 then x = ±√9 = ±3

That's why in something like the quadratic formula we all had to memorize in school its got a "plus or minus" in it: -b ± √...(etc)

[-] UnRelatedBurner@sh.itjust.works 8 points 7 months ago

Thanks, I haven't connected the dots to that (+-) sign and this problem.

[-] Routhinator@startrek.website 2 points 7 months ago

So I checked this on my smartphone first, and thought maybe the software is just shit.. So then I checked it on a Casio scientific calc, and both agree.

-3^2 = -9... And 9 != -9

.... Are all the calculators somehow wrong? What's the math rule I'm forgetting here...

[-] criitz@reddthat.com 5 points 7 months ago

I think your calculator is interpreting that as -(3^2) and not (-3)^2

[-] Routhinator@startrek.website 3 points 7 months ago

Oh derp. Yep it is.

Was better when calcs had a +/- button.

And I remembered the math rule too.

[-] Routhinator@startrek.website 1 points 7 months ago

GD I am just realizing how long its been since I did math in my head without a programming language..

I should take a math class again or something and refresh that knowledge.

[-] h3ndrik@feddit.de 22 points 7 months ago* (last edited 7 months ago)

x^2 = 9

<=>

|x| = sqrt(9)

would be correct. That way you get both 3 and -3 for x.

That's the way your math teacher would do it. So the correct version of the statement in the picture is: "if x^2 = 9 then abs(x) = 3"

[-] UnRelatedBurner@sh.itjust.works 4 points 7 months ago

Cool! Makes sense to me. Honestly, I've never done it this way, but it's so clean. Love it. Thanks.

[-] Evil_Shrubbery@lemm.ee 13 points 7 months ago

Fund the sqrter!

[-] Kusimulkku@lemm.ee 2 points 7 months ago
[-] Crashumbc@lemmy.world 20 points 7 months ago

Also math teacher...

"Show your work"

[-] merari42@lemmy.world 17 points 7 months ago

Middle school math memes

[-] xkforce@lemmy.world 15 points 7 months ago

The number of solutions/roots is equal to the highest power x is raised to (there are other forms with different rules and this applies to R and C not higher order systems)

Some roots can be complex and some can be duplicates but when it comes to the real and complex roots, that rule generally holds.

[-] GnomeKat 5 points 7 months ago* (last edited 7 months ago)

I think you can make arbitrarily complicated roots if you move over to G^n^ which includes the R and C roots...

For example the grade 4 blade (3e1e2e3e4)^2 = 9 in G^4^

Complex roots are covered because the grade 2 blade (e1e2)^2 = -1 making it identical to i so G^n^ (n>=2) includes C.

G^n^ also includes all the scalars (grade 0 blades) so all the real roots are included.

G^n^ also includes all the vectors (grade 1 blades) so any vector with length 3 will square to 9 because u^2 = u dot u = |u|^2 where u is a vector.

All blades will square to a scalar but blades are not the only thing in G^n^ so things get weird with the multivectors(sums of different grades). Any blade with grade n%4 < 2 will square to a positive scalar and the other grades will square to a negative, with the abs of the scalar equal to the norm^2^ of the blade. Can pretty much just make as many roots as you want if you are willing to move into higher dimensional spaces and use a way cooler product.

[-] MBM@lemmings.world 3 points 7 months ago

I thought this would be related to quaternions, octonions etc. but no, it's multivectors and wedge products. Very neat, I didn't know you could use them like that.

[-] GnomeKat 2 points 7 months ago* (last edited 7 months ago)

Oh no, you were right on the money. In G^2^ you have two basis vectors e1 and e2. The geometric product of vectors specifically is equivalent to uv = u dot v + u wedge v.. the dot returns a scalar, the wedge returns a bivector. When you have two vectors be orthonormal like the basis vectors, the dot goes to 0 and you are just left with u wedge v. So e1e2 returns a bivector with norm 1, its the only basis bivector for G^2^.

e1e2^2 = (e1e2)*(e1e2) = e1e2e1e2

A nice thing about the geometric product is its associative so you can rewrite as e1*(e2e1)*e2.. again that middle product is still just a wedge but the wedge product is anti commutative so e2e1 = -e1e2. Meaning you can rewrite the above as e1*(-e1e2)*e2 = -(e1e1)*(e2e2) = -(e1 dot e1)*(e2 dot e2) = -(1)*(1) = -1.. Thus e1e2 squares to -1 and is the same as i. And now you can think of the geometric product of two vectors as uv = u dot v + u wedge v = a + bi which is just a complex number.

In G^3^ you can do the same but now you have 3 basis vectors to work with, e1, e2, e3. Meaning you can construct 3 new basis bivectors e1e2, e2e3, e3e1. You can flip them to be e2e1, e3e2, e1e3 without any issues its just convention and then its the same as quaternions. They all square to -1 and e2e1*e3e2*e1e3 = -e2e1e2e3e1e3 = e2e1e2e1e3e3 = e2e1e2e1 = -1 which is the same as i,j,k of quaternions. So just like in G^2^ the bivectors + scalars form C you get the quaternions in G^3^. Both of them are just bivectors and they work the same way. Octonions and beyond can be made in higher dimensions. Geometric algebra is truly some cool shit.

[-] someacnt_@lemmy.world 1 points 7 months ago

Then you can extend to arbitrary algebra

[-] Beetschnapps@lemmy.world 2 points 7 months ago* (last edited 7 months ago)

To translate: As a child learning math this equates to “ignore math, the explanations don’t explain anything real, they only explain more math.“

“The only explanation is more abstraction with no real world application as far as math class is concerned. Frankly, there’s more application to your own life experience if you focus on language and the arts.”

[-] overcast5348@lemmy.world 11 points 7 months ago

I'm guessing that you were one of those "I won't ever use all this math" kind of students?

[-] Aussiemandeus@aussie.zone 3 points 7 months ago

Boy do I ever use maths at work all the damn time.

And I'm a mechanic

[-] Beetschnapps@lemmy.world 2 points 7 months ago

I was one of those students who asked how it would be used, the teachers didn’t do the whole real world application part, and I never needed to go past trig.

I work with engineers and use math like any other human on the planet but really wish mathematics was taught differently to make it more interesting. You hear a PHD candidate talk about the hairy ball problem and the math is interesting. Math class never was.

[-] Patrizsche@lemmy.ca 15 points 7 months ago

Me, a statistician: "if chi-square equals 9 then chi equals 3... What??"

[-] space@lemmy.dbzer0.com 13 points 7 months ago

My teacher explained as sqrt(poop^2) = abs(poop). Yes, he wrote poop on the blackboard.

[-] NeatNit@discuss.tchncs.de 4 points 7 months ago

He should have drawn a pile of poop instead 💩 (preferably without a face)

[-] bleistift2@feddit.de 7 points 7 months ago* (last edited 7 months ago)

This only ever got handed down to us as gospel. Is there a compelling reason why we should accept that (-3) × (-3) = 9?

[-] notabot@lemm.ee 31 points 7 months ago

You can look at multiplication as a shorthand for repeated addition, so, for example:

3x3=0 + 3 + 3 + 3 = 9

In other words we have three lots of three. The zero will be handy later...

Next consider:

-3x3 = 0 + -3 + -3 + -3 = -9

Here we have three lots of minus three. So what happens if we instead have minus three lots of three? Instead of adding the threes, we subtract them:

3x-3 = 0 - 3 - 3 - 3 = -9

Finally, what if we want minus three lots of minus three? Subtracting a negative number is the equivalent of adding the positive value:

-3x-3 = 0 - -3 - -3 - -3 = 0 + 3 + 3 + 3 = 9

Do let me know if some of that isn't clear.

[-] bleistift2@feddit.de 13 points 7 months ago* (last edited 7 months ago)

This was very clear. Now that I see it, I realize it’s the same reasoning why x^(-3) is 1/(x^3):

 2 × -3 = -6
 1 × -3 = -3
 0 × -3 =  0
-1 × -3 =  3

Thank you!

[-] affiliate@lemmy.world 4 points 7 months ago

i think this is a really clean explanation of why (-3) * (-3) should equal 9. i wanted to point out that with a little more work, it's possible to see why (-3) * (-3) must equal 9. and this is basically a consequence of the distributive law:

0  = 0 * (-3)
   = (3 + -3) * (-3)
   = 3 * (-3) + (-3) * (-3)
   = -9 + (-3) * (-3).

the first equality uses 0 * anything = 0. the second equality uses (3 + -3) = 0. the third equality uses the distribute law, and the fourth equality uses 3 * (-3) = -9, which was shown in the previous comment.

so, by adding 9 to both sides, we get:

9 = 9 - 9 + (-3) * (-3).

in other words, 9 = (-3) * (-3). this basically says that if we want the distribute law to be true, then we need to have (-3) * (-3) = 9.

it's also worth mentioning that this is a specific instance of a proof that shows (-a) * (-b) = a * b is true for arbitrary rings. (a ring is basically a fancy name for a structure with addition and distribute multiplication.) so, any time you want to have any kind of multiplication that satisfies the distribute law, you need (-a) * (-b) = a * b.

in particular, (-A) * (-B) = A * B is also true when A and B are matrices. and you can prove this using the same argument that was used above.

[-] ImplyingImplications@lemmy.ca 5 points 7 months ago* (last edited 7 months ago)

Here's another example:

A) -3 × (-3 + 3) = ?

You can solve this by figuring out the brackets first. -3 × 0 = 0

You can also solve this using the distributive property of multiplication, rewriting the equation as

A) -3 × (-3 + 3) = 0
(-3 × -3) + (-3 × 3) = 0
(-3 × -3) - 9 = 0
(-3 × -3) = 9

If (-3 × -3) didn't equal 9 then you'd get different answers to equation A depending on what method you used to solve it.

[-] Davel23@fedia.io 5 points 7 months ago

Same reason that a double negative makes a positive.

[-] Maggoty@lemmy.world 4 points 7 months ago

I know the math but I still feel like I'm out of the loop somehow?

[-] kszeslaw@szmer.info 5 points 7 months ago

(-3)^2 = 9 as well

[-] JackbyDev@programming.dev 5 points 7 months ago

There's nothing more to this than linking the star wars quote to the -3. That's it lol

[-] Maggoty@lemmy.world 1 points 7 months ago

Oh okay. Don't mind me trying to over analyze things.

this post was submitted on 17 Apr 2024
755 points (100.0% liked)

Science Memes

11081 readers
2268 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS