382
submitted 2 months ago by silverchase@sh.itjust.works to c/mathmemes
you are viewing a single comment's thread
view the rest of the comments
[-] JeeBaiChow@lemmy.world 7 points 2 months ago

It's fucking obvious!

Seriously, I once had to prove that mulplying a value by a number between 0 and 1 decreased it's original value, i.e. effectively defining the unary, which should be an axiom.

[-] Sop 5 points 2 months ago

Mathematicians like to have as little axioms as possible because any axiom is essentially an assumption that can be wrong.

Also proving elementary results like your example with as little tools as possible is a great exercise to learn mathematical deduction and to understand the relation between certain elementary mathematical properties.

[-] friendlymessage@feddit.org 3 points 2 months ago* (last edited 2 months ago)

So you need to proof x•c < x for 0<=c<1?

Isn't that just:

xc < x | ÷x

c < x/x (for x=/=0)

c < 1 q.e.d.

What am I missing?

[-] bleistift2@sopuli.xyz 5 points 2 months ago

My math teacher would be angry because you started from the conclusion and derived the premise, rather than the other way around. Note also that you assumed that division is defined. That may not have been the case in the original problem.

[-] lseif@sopuli.xyz 2 points 2 months ago

isnt that how methods like proof by contrapositive work ??

[-] bleistift2@sopuli.xyz 3 points 2 months ago

Proof by contrapositive would be c<0 ∨ c≥1 ⇒ … ⇒ xc≥x. That is not just starting from the conclusion and deriving the premise.

[-] lseif@sopuli.xyz 1 points 2 months ago
[-] bleistift2@sopuli.xyz 2 points 2 months ago

Then don’t get involved in this discussion.

[-] friendlymessage@feddit.org 1 points 2 months ago* (last edited 2 months ago)

Your math teacher is weird. But you can just turn it around:

c < 1

c < x/x | •x

xc < x q.e.d.

This also shows, that c≥0 is not actually a requirement, but x>0 is

I guess if your math teacher is completely insufferable, you need to add the definitions of the arithmetic operations but at that point you should also need to introduce Latin letters and Arabic numerals.

[-] superb 3 points 2 months ago

It can’t be an axiom if it can be defined by other axioms. An axiom can not be formally proven

this post was submitted on 20 Oct 2024
382 points (100.0% liked)

Math Memes

1606 readers
2 users here now

Memes related to mathematics.

Rules:
1: Memes must be related to mathematics in some way.
2: No bigotry of any kind.

founded 2 years ago
MODERATORS