227
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 13 Aug 2023
227 points (100.0% liked)
Technology
37727 readers
493 users here now
A nice place to discuss rumors, happenings, innovations, and challenges in the technology sphere. We also welcome discussions on the intersections of technology and society. If it’s technological news or discussion of technology, it probably belongs here.
Remember the overriding ethos on Beehaw: Be(e) Nice. Each user you encounter here is a person, and should be treated with kindness (even if they’re wrong, or use a Linux distro you don’t like). Personal attacks will not be tolerated.
Subcommunities on Beehaw:
This community's icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.
founded 2 years ago
MODERATORS
That's not entirely true.
LLMs are trained to predict next word given context, yes. But in order to do that, they develop internal model that minimizes error across wide range of contexts - and emergent feature of this process is that the model DOES perform more than pure compression of the training data.
For example, GPT-3 is able to calculate addition and subtraction problems that didn't appear in the training dataset. This would suggest that the model learned how to perform addition and subtraction, likely because it was easier or more efficient than storing all of the examples from the training data separately.
This is a simple to measure example, but it's enough to suggests that LLMs are able to extrapolate from the training data and perform more than just stitch relevant parts of the dataset together.
That's interesting, I'd be curious to read more about that. Do you have any links to get started with? Searching this type of stuff on Google yields less than ideal results.
In my comment I've been referencing https://arxiv.org/pdf/2005.14165.pdf, specifically section 3.9.1 where they summarize results of the arithmetic tasks.
Check out this one: https://thegradient.pub/othello/
In it, researchers built a custom LLM trained to play a board game just by predicting the next move in a series of moves, with no input at all about the game state. They found evidence of an internal representation of the current game state, although the model had never been told what that game state looks like.
isn't gpt famously bad at math problems?
GPT3 is pretty bad at it compared to alternatives (although it's hard to compete with calculators on that field), but if it was just repeating after the training dataset it would be way worse. From the study I've linked in my other comment (https://arxiv.org/pdf/2005.14165.pdf):