934
Murica
(lemmy.ml)
This is a place to share greentexts and witness the confounding life of Anon. If you're new to the Greentext community, think of it as a sort of zoo with Anon as the main attraction.
Be warned:
If you find yourself getting angry (or god forbid, agreeing) with something Anon has said, you might be doing it wrong.
Nice graphic. ~~But it seems like it doesn't factor in kg of mass moved. A human and a bike is a lot lighter than a car or a horse. You could also argue that the vehicle weigh should be ignored but then again you could easily argue back that weight of goods move can possibly be a lot higher with a car if you load it up to capacity~~. Ignore that. I did not see it said 5 riders for the car
I'm back with better data. I'm assuming the travel path is perfectly flat because I don't feel like modeling elevation changes. I'm being energy efficient (read: lazy).
For cycling, I'm using the global average human weight of 62 kg, assuming the cycle is 8 kg, and the pace is 10 kph, which is pretty relaxed.
For walking, I'm using the 62 kg person walking at 4 kph.
For driving with petrol, we'll use the same spherical 62 kg human and a 2024 Toyota Prius with a fuel efficiency of 4.8 L/100 km and a mass of 1570 kg. One liter of petrol is approximately 8174 kcal. Double the energy expenditure for an estimate for your typical SUV.
For electric, I chose a 2024 Hyundai Ioniq 5 N with an energy efficiency of 21.2 kWh/100km and a mass of 2235 kg. One kilowatt-hour is approximately 860 kcal.
Walking: 0.74 kcal•km^-1^•kg^-1^
Cycling: 0.34 kcal•km^-1^•kg^-1^
Driving(p): 0.24 kcal•km^-1^•kg^-1^
Driving(e): 0.08 kcal•km^-1^•kg^-1^
Wait so cars are more efficient than cycling now ?
It still doesn't give us kcal•km^-1^•kg^-1^ (or an equivalent), which is what I was looking for. We could do some math to get us some loose estimates, though. I'll do exactly that and report back shortly.