348
submitted 1 year ago* (last edited 1 year ago) by balderdash9@lemmy.zip to c/memes@lemmy.world

I considered deleting the post, but this seems more cowardly than just admitting I was wrong. But TIL something!

you are viewing a single comment's thread
view the rest of the comments
[-] cows_are_underrated@feddit.de 1 points 1 year ago

Correct me if I'm wrong, but isn't it that a simple statement(this is more worth than the other) can't be done, since it isn't stated how big the infinities are(as example if the 1$ infinity is 100 times bigger they are worth the same).

[-] WilloftheWest@feddit.uk 1 points 1 year ago* (last edited 1 year ago)

Sorry if you've seen this already, as your comment has just come through. The two sets are the same size, this is clear. This is because they're both countably infinite. There isn't such a thing as different sizes of countably infinite sets. Logic that works for finite sets ("For any finite a and b, there are twice as many integers between a and b as there are even integers between a and b, thus the set of integers is twice the set of even integers") simply does not work for infinite sets ("The set of all integers has the same size as the set of all even integers").

So no, it isn't due to lack of knowledge, as we know logically that the two sets have the exact same size.

[-] cows_are_underrated@feddit.de 1 points 1 year ago

OK thanks for your explanation.

this post was submitted on 06 Jan 2024
348 points (100.0% liked)

memes

11143 readers
3060 users here now

Community rules

1. Be civilNo trolling, bigotry or other insulting / annoying behaviour

2. No politicsThis is non-politics community. For political memes please go to !politicalmemes@lemmy.world

3. No recent repostsCheck for reposts when posting a meme, you can only repost after 1 month

4. No botsNo bots without the express approval of the mods or the admins

5. No Spam/AdsNo advertisements or spam. This is an instance rule and the only way to live.

Sister communities

founded 2 years ago
MODERATORS