21
๐ - 2023 DAY 8 SOLUTIONS -๐
(programming.dev)
An unofficial home for the advent of code community on programming.dev!
Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.
Solution Threads
| M | T | W | T | F | S | S |
|---|---|---|---|---|---|---|
| 1 | ||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| 23 | 24 | 25 |
Icon base by Lorc under CC BY 3.0 with modifications to add a gradient
console.log('Hello World')
This assumption doesn't hold in general, however you can construct an efficient algorithm, even if it doesn't hold.
First, let's show that a cycle always exists. Let
Ibe the size of the instruction string, andNbe the number of nodes. Since the number of states for each ghost is at mostI*N, after a finite number of steps, the ghost will go into one of the previous states and cycle forever. Let's say that the cycle length isc, and aftera+csteps the ghost has entered the same state it was afterasteps.Let's assume[^1] that during the first
a+csteps the ghost has only once encounter an end state (a node ending with 'Z'), specifically afterestates. Ife >= a, this means that the ghost will encounter the end state also aftere + cande + 2cand so on, or for every number of stepss > esuch thats = e (mod c). The assumption you formulated meanse = 0 (mod c), ore = c.Now, consider the
Kghosts that are travelling simultaneously. If afternsteps all ghosts have reached the end state, this means thatn = e_i (mod c_i)for all ghostsi(1 <= i <= K). According to the Chinese remainder theorem, there is a solution if and only ife_1 = e_2 = ... = e_K (mod gcd(c_1, c_2, ... c_K)). If the assumption you formulated holds, thene_i = 0 (mod c_i), solcm(c_1, ... c_K)works as a solution. If it doesn't, you can still findn, but it will be a bit more tricky (which is probably why the authors of the challenge madee = calways).[^1] -- this is another assumption you've implicitly made, and that happens to hold for all the inputs. However, if this assumption doesn't hold, we can check all possible combination of end state positions.
re [^1]: yeah, but that may explode the runtime again. Do you have any idea if this is possible to solve without brute forcing the combinations?
I don't think it will explode the runtime. If you have multiple feasible values for
eper ghost, you just need to find a combination ofe_isuch thate_1 = e_2 = ... = e_K (mod gcd(c_1, c_2, ... c_K)), which is just an intersection ofKsets of at mostI*Nelements.