10
Recommendations for a context aware text classifier
(lemmy.world)
Welcome to Machine Learning – a versatile digital hub where Artificial Intelligence enthusiasts unite. From news flashes and coding tutorials to ML-themed humor, our community covers the gamut of machine learning topics. Regardless of whether you're an AI expert, a budding programmer, or simply curious about the field, this is your space to share, learn, and connect over all things machine learning. Let's weave algorithms and spark innovation together.
Oof, pop-culture references are hard and I had not considered that at all.
Thanks for the examples, I'll have a think on how to deal with those.
My only insight is one you already had.
Test at least the comment before, and then use the output to dampen or amplify the final result.
Sorry for being no help at all.
--
My project is very basic but I'll post it here for any insight you might get out of it.
I teach Python in a variety of settings and this is part of a class.
The data used is from Kaggle: https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/
The original data came from Wikipedia toxic comments dataset.
There is code too from several users, very helpful for some insight into the problem.
Data is dirty and needs clean up so I've done so and posted result on HF here:
https://huggingface.co/datasets/vluz/Tox
Model is a very basic TensorFlow implementation intended for teaching TF basics.
https://github.com/vluz/ToxTest
Some of the helper scripts are very wonky, need fixing before I present this in class.
Here are my weights after 30 epochs:
https://huggingface.co/vluz/toxmodel30
And here is it running on a HF space:
https://huggingface.co/spaces/vluz/Tox